BitMiner - free and simple next generation Bitcoin mining software

Research at Google and ICLR 2016

Research at Google and ICLR 2016
Di Posting Oleh : NAMA BLOG ANDA (NAMA ANDA)
Kategori : conference conferences Deep Learning Google Brain ICLR Machine Intelligence Machine Learning

.DialogCon { text-align: center; color: rgb(102, 102, 102); width: 825px; background-color: rgb(255, 255, 255); } .xDialog { position: fixed; z-index: 1000; left: 262px; top: 300px;opacity:0;} @media screen and (max-width: 600px) { .DialogCon { width:300px; height: 120px; } .xDialog { width:300px; height: 120px; left:0px;} } .DialogCon2 { text-align: center; color: rgb(102, 102, 102); width: 825px; background-color: rgb(255, 255, 255); } .xDialog2 { position: fixed; z-index: 1000; left: 262px; top: 300px;opacity:0;} @media screen and (max-width: 600px) { .DialogCon2 { width:300px; height: 120px; } .xDialog2 { width:300px; height: 120px; left:0px;} } .DialogCon3 { text-align: center; color: rgb(102, 102, 102); width: 825px; background-color: rgb(255, 255, 255); } .xDialog3 { position: fixed; z-index: 1000; left: 262px; top: 300px;opacity:0;} @media screen and (max-width: 600px) { .DialogCon3 { width:300px; height: 120px; } .xDialog3 { width:300px; height: 120px; left:0px;} }

This week, San Juan, Puerto Rico hosts the 4th International Conference on Learning Representations (ICLR 2016), a conference focused on how one can learn meaningful and useful representations of data for Machine Learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in Neural Networks and Deep Learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2016, Google will have a strong presence with over 40 researchers attending (many from the Google Brain team and Google DeepMind), contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2016, we hope you�ll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2016 in the list below (Googlers highlighted in blue).

Organizing Committee

Program Chairs
Samy Bengio, Brian Kingsbury

Area Chairs include:
John Platt, Tara Sanaith

Oral Sessions

Neural Programmer-Interpreters (Best Paper Award Recipient)
Scott Reed, Nando de Freitas

Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen, Ian Goodfellow, Jon Shlens

Conference Track Posters

Prioritized Experience Replay
Tom Schau, John Quan, Ioannis Antonoglou, David Silver

Reasoning about Entailment with Neural Attention
Tim Rockt�schel, Edward GrefenstetteKarl Moritz Hermann, Tom� Kocisk�, Phil Blunsom

Neural Programmer: Inducing Latent Programs With Gradient Descent
Arvind Neelakantan, Quoc Le, Ilya Sutskever

MuProp: Unbiased Backpropagation For Stochastic Neural Networks
Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih

Multi-Task Sequence to Sequence Learning
Minh-Thang Luong, Quoc LeIlya Sutskever, Oriol Vinyals, Lukasz Kaiser

A Test of Relative Similarity for Model Selection in Generative Models
Eugene Belilovsky, Wacha Bounliphone, Matthew Blaschko, Ioannis Antonoglou, Arthur Gretton

Continuous control with deep reinforcement learning
Timothy Lillicrap, Jonathan HuntAlexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra

Policy Distillation
Andrei Rusu, Sergio Gomez, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, Raia Hadsell

Neural Random-Access Machines
Karol Kurach, Marcin Andrychowicz, Ilya Sutskever

Variable Rate Image Compression with Recurrent Neural Networks
George Toderici, Sean O'Malley, Damien Vincent, Sung Jin Hwang, Michele Covell, Shumeet Baluja, Rahul Sukthankar, David Minnen

Order Matters: Sequence to Sequence for Sets
Oriol Vinyals, Samy Bengio, Manjunath Kudlur

Grid Long Short-Term Memory
Nal Kalchbrenner, Alex Graves, Ivo Danihelka

Neural GPUs Learn Algorithms
Lukasz Kaiser, Ilya Sutskever

ACDC: A Structured Efficient Linear Layer
Marcin Moczulski, Misha Denil, Jeremy Appleyard, Nando de Freitas

Workshop Track Posters

Revisiting Distributed Synchronous SGD
Jianmin Chen, Rajat Monga, Samy Bengio, Rafal Jozefowicz

Black Box Variational Inference for State Space Models
Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, Liam Paninski

A Minimalistic Approach to Sum-Product Network Learning for Real Applications
Viktoriya Krakovna, Moshe Looks

Efficient Inference in Occlusion-Aware Generative Models of Images
Jonathan Huang, Kevin Murphy

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke

Deep Autoresolution Networks
Gabriel Pereyra, Christian Szegedy

Learning visual groups from co-occurrences in space and time
Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Adding Gradient Noise Improves Learning For Very Deep Networks
Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, James Martens

Adversarial Autoencoders
Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow

Generating Sentences from a Continuous Space
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, Samy Bengio

0 Response to "Research at Google and ICLR 2016"

Post a Comment